A generalisation of a solvable model in population dynamics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1990 J. Phys. A: Math. Gen. 23 L727S
(http://iopscience.iop.org/0305-4470/23/14/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 08:39

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A generalisation of a solvable model in population dynamics

George DeRise \dagger and John A Adam \ddagger
\dagger Division of Natural Science and Mathematics, Thomas Nelson Community College, Hampton, VA 23670, USA
\ddagger Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529-0077, USA

Received 9 May 1990

Abstract

Biswas and Karmakar were the first to consider a periodic rate transform for an autocatalytic growth process, $G(x)=-\tan (\alpha \ln x)$. They obtained an exact analytic solution for the probability density function by solving the equivalent Schrödinger equation for the Fokker-Planck equation, and utilised this function to calculate various moments. In this letter we extend their work to a more general rate transform $G(x)=$ $\alpha \tan (\beta \ln x)+\delta \cot (\beta \ln x)$.

The growth of a population with random environmental influences has been considered by Goel et al [1] and Montroll [2]. They assumed that the population $N(t)$ satisfied a stochastic differential equation of the form

$$
\begin{equation*}
\frac{\mathrm{d} N}{\mathrm{~d} t}=k N G\left(\frac{N}{\theta}\right)+N F(t) \tag{1}
\end{equation*}
$$

where k is a (constant) growth rate parameter, G is a growth rate function, θ is the (constant) saturation level and $F(t)$ is a random function representing chance, unspecified influences not taken care of by $G . F(t)$ has the properties
(1) $\langle F(t)\rangle=0$
(2) $\left\langle F(t) \cdot F\left(t^{\prime}\right)\right\rangle=\sigma^{2} \delta\left(t-t^{\prime}\right)$
(3) $F(t)$ is a Gaussian process
i.e. $F(t)$ represents Gaussian white noise.

Working with the more convenient variable $v=\ln N / \theta$ (1) becomes

$$
\begin{equation*}
\frac{\mathrm{d} v}{\mathrm{~d} t}=k G\left(\mathrm{e}^{v}\right)+F(t) . \tag{2}
\end{equation*}
$$

By a stochastic argument Goel et al derive a Fokker-Planck equation for the probability $P(v, t)$, that $\log N / \theta$ has a value v at time t,

$$
\begin{equation*}
\frac{\partial P}{\partial t}=-k \frac{\partial}{\partial v}\left\{P G\left(\mathrm{e}^{v}\right)\right\}+\frac{1}{2} \sigma^{2} \frac{\partial^{2} P}{\partial v^{2}} . \tag{3}
\end{equation*}
$$

If we set

$$
\begin{equation*}
P=\Psi(v, t) \exp \left\{\frac{k}{\sigma^{2}} \int_{a}^{t} G\left(\mathrm{e}^{v}\right) \mathrm{d} v\right\} \tag{4}
\end{equation*}
$$

(3) becomes the 'equivalent' Schrödinger equation

$$
\begin{equation*}
\frac{2}{k} \frac{\partial \Psi}{\partial t}=\frac{\sigma^{2}}{k} \frac{\partial^{2} \Psi}{\partial v^{2}}-\left\{\frac{k}{\sigma^{2}}\left[G\left(\mathrm{e}^{v}\right)\right]^{2}+\frac{\partial}{\partial v} G\left(\mathrm{e}^{v}\right)\right\} \Psi . \tag{5}
\end{equation*}
$$

Separating variables by letting $\Psi(v, t)=\mathrm{e}^{-\hat{a} t} X(v)$, the spatial dependence reduces to the Schrödinger equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} X}{\mathrm{~d} v^{2}}+\left(\frac{k E}{\sigma^{2}}-U\right) X=0 \tag{6}
\end{equation*}
$$

where $-E$ is the separation constant, and U is the Schrödinger potential given by the expression in braces in (5). If

$$
G\left(\mathrm{e}^{v}\right)=\alpha \tan \beta v+\delta \cot \beta v
$$

then letting $\xi=\beta v$ in (6) and defining
$E=\frac{k}{\beta^{2} \sigma^{2}}\left(\frac{2 \hat{a}}{k}-\frac{2 \alpha k \delta}{\sigma^{2}}+\frac{k \alpha^{2}}{\sigma^{2}}+\frac{k \delta^{2}}{\sigma^{2}}\right)$
$\frac{k}{\beta^{2} \sigma^{2}}\left(\frac{k \alpha^{2}}{\sigma^{2}}+\alpha \beta\right)=\lambda(\lambda-1) \quad$ and $\quad \frac{k}{\beta^{2} \sigma^{2}}\left(\frac{k \delta^{2}}{\sigma^{2}}-\delta \beta\right)=\kappa(\kappa-1)$
(6) becomes

$$
\begin{equation*}
\frac{\mathrm{d}^{2} X}{\mathrm{~d} \xi^{2}}+\left[E-\left(\frac{\lambda(\lambda-1)}{\cos ^{2} \xi}+\frac{\kappa(\kappa-1)}{\sin ^{2} \xi}\right)\right] X=0 \quad \lambda, \kappa>1 . \tag{9}
\end{equation*}
$$

Choosing the single branch $0 \leqslant \xi \leqslant \pi / 2$ we solve (9) with boundary conditions $X=0$ for $\xi=0, X=0$ for $\xi=\pi / 2$. This is a classic problem in quantum mechanics, namely that of the solution of the Schrödinger equation for the first Pöschl-Teller potential [3].

First transform to the new independent variable $y=\sin ^{2} \xi$ obtaining
$y(1-y) X^{\prime \prime}(y)+\left(\frac{1}{2}-y\right) X^{\prime}(y)+\frac{1}{4}\left[E-\left(\frac{\lambda(\lambda-1)}{(1-y)}+\frac{\kappa(\kappa-1)}{y}\right)\right] X=0$
and then to the new dependent variable

$$
\begin{equation*}
X=y^{\mu}(1-y)^{\gamma} f(y) \tag{11}
\end{equation*}
$$

we get

$$
\begin{equation*}
y(1-y) f^{\prime \prime}(y)+\left[\left(\kappa+\frac{1}{2}\right)-(\kappa+\lambda+1) y\right] f^{\prime}(y)+\frac{1}{4}\left[E-(\kappa+\lambda)^{2}\right] f=0 \tag{12}
\end{equation*}
$$

by choosing $\mu=\kappa / 2, \gamma=\lambda / 2$. Equation (12) is a hypergeometric differential equation which has a general solution [4]

$$
\begin{equation*}
f=C_{12} F_{1}(a, b ; c ; y)+C_{2} y^{1-c}{ }_{2} F_{1}(a+1-c, b+1-c ; 2-c ; y) \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\frac{1}{2}(\kappa+\lambda \pm \sqrt{E}) \quad b=\frac{1}{2}(\kappa+\lambda \mp \sqrt{E}) \quad c=\kappa+\frac{1}{2} \tag{14}
\end{equation*}
$$

since $X=0$ for $y=0, C_{2}=0$. To obtain the condition at $y=1$ we use the well known transformation 15.3 .6 in [5]. In the vicinity of $y=1$ we must take $b=-n, n=0,1,2, \ldots$ to avoid the singularity due to the negative exponent $\frac{1}{2}-\lambda$ in the second term. Using
(14) we find $a=\kappa+\lambda+n$ and the eigenvalues $E_{n}=(\kappa+\lambda+2 n)^{2}$. The corresponding eigenfunctions are

$$
\begin{equation*}
X_{n}=\sin ^{\kappa} \xi \cos ^{\wedge} \xi_{2} F_{1}\left(\kappa+\lambda+n,-n ; \kappa+\frac{1}{2} ; \sin ^{2} \xi\right) . \tag{15}
\end{equation*}
$$

Since the Jacobi polynomials are defined by [6]

$$
\begin{equation*}
J_{n}(p, q ; x)={ }_{2} F_{1}(p+n,-n ; q ; x) \tag{16}
\end{equation*}
$$

the eigenfunctions X_{n} can be written

$$
\begin{equation*}
X_{n}=\sin ^{\kappa} \xi \cos ^{\lambda} \xi J_{n}\left(\kappa+\lambda, \kappa+\frac{1}{2} ; \sin ^{2} \xi\right) . \tag{17}
\end{equation*}
$$

The Jacobi polynomials have the orthogonality condition [5]
$\int_{0}^{1} x^{q-1}(1-x)^{p-q} J_{n}(p, q ; x) J_{m}(p, q ; x) \mathrm{d} x=N(p, q, n) \delta_{m n} \quad q>0, p-q>-1$
where the explicit form of N is of no consequence for our discussion.
Thus,

$$
\begin{gather*}
\int_{0}^{\pi / 2} \sin ^{2 \kappa} \xi \cos ^{2 \lambda} \xi J_{n}\left(\kappa+\lambda, \kappa+\frac{1}{2} ; \sin ^{2} \xi\right) J_{m}\left(\kappa+\lambda, \kappa+\frac{1}{2} ; \sin ^{2} \xi\right) \mathrm{d} \xi \\
=\frac{N \delta_{m n}}{2} \quad \kappa>-\frac{1}{2}, \lambda>-\frac{1}{2} \tag{19}
\end{gather*}
$$

The most general solution for Ψ is

$$
\begin{equation*}
\Psi(v, t)=\sum_{n=0}^{\times} C_{n} X_{n}(\xi) \mathrm{e}^{-\hat{a} t} \tag{20}
\end{equation*}
$$

where \hat{a} is easily found from our expressions for E and e_{n}.
Using (4)

$$
\begin{equation*}
P(v, t)=\Psi(v, t) \bar{K} \sec ^{\alpha \beta} \beta v \sin ^{\delta \beta} \beta v \tag{21}
\end{equation*}
$$

with appropriate conditions on $\alpha \beta, \delta \beta$ from (8) where \bar{K} is the constant value of the integrated expression at the lower limit of integration.

From (21),

$$
\begin{equation*}
\Psi(v, 0)=\frac{1}{\bar{K}} \cos ^{\alpha \beta} \xi \operatorname{cosec}^{\delta \beta} \xi P(v, 0) \tag{22}
\end{equation*}
$$

From (20),

$$
\begin{equation*}
\int_{0}^{\pi / 2} \Psi(v, 0) X_{m}(\xi) \mathrm{d} \xi=\sum_{n-0}^{\infty} C_{n} \int_{0}^{\pi / 2} X_{n}(\xi) X_{m}(\xi) \mathrm{d} \xi \tag{23}
\end{equation*}
$$

Now utilising (17), (19) and (22) we get

$$
\begin{equation*}
\int_{0}^{\pi / 2} \frac{1}{\bar{K}} P(v, 0) \cos ^{\alpha \beta} \xi \operatorname{cosec}^{\delta \beta} \xi X_{m}(\xi) \mathrm{d} \xi=\frac{1}{2} C_{n} N(\kappa, \lambda, n) . \tag{24}
\end{equation*}
$$

Set $P(v, 0)=\delta\left(v-v_{0}\right)$ with $\xi_{0}=v_{0} \beta$ corresponding to an initial spiked distribution and we obtain

$$
\begin{equation*}
C_{n}=\left(\frac{2}{N}\right) \cos ^{\alpha \beta} \xi_{0} \operatorname{cosec}^{\delta \beta} \xi_{0} X_{m}\left(\xi_{0}\right) \tag{25}
\end{equation*}
$$

Now using (17), (20), (21) and (25) we derive an expression for the probability density function $P(v, t)$
$P(v, t)=\sum_{n=0}^{\infty} \frac{2}{N} \sin ^{\alpha+\delta \beta} \xi \cos ^{\lambda-\alpha \beta} \xi \sin ^{\alpha-\delta \beta} \xi_{0} \cos ^{\lambda+\alpha \beta} \xi_{0} J_{m}\left(\xi_{0}\right) J_{n}(\xi) \mathrm{e}^{-\hat{a} t}$.
This reduces to the analogous expression given by Biswas and Karmakar [7] when the appropriate substitutions are made. Choosing $v_{0} \beta=\pi / 4$ so that all terms involving ξ_{0} are incorporated into a constant M

$$
\begin{equation*}
P(v, t)=\sum_{n=0}^{\infty} M \sin ^{\kappa+\delta \beta} \xi \cos ^{\lambda-\alpha \beta} \xi J_{n}(\xi) \mathrm{e}^{-\hat{\alpha} t} . \tag{27}
\end{equation*}
$$

The moments of N / θ can easily be found from this density function

$$
\begin{align*}
\left\langle\left(\frac{N}{\theta}\right)^{2 \lambda}\right\rangle= & \left\langle\mathrm{e}^{2 \bar{\lambda} v}\right\rangle \\
= & \int_{0}^{\pi \beta / 2} P(v, t) \mathrm{e}^{2 \lambda v} \mathrm{~d} v \\
= & \int_{9}^{\pi / 2} \sum_{n=0}^{\infty} \frac{M}{\beta} \sin ^{\kappa+\delta \beta} \xi \cos ^{\lambda-\alpha \beta} \xi J_{n}\left(\kappa+\lambda, \kappa+\frac{1}{2} ; \sin ^{2} \xi\right) \\
& \times \exp \left(\frac{2 \tilde{\lambda} \xi}{\beta}-\hat{a} t\right) \mathrm{d} \xi . \tag{28}
\end{align*}
$$

The Jacobi polynomials may be written as

$$
\begin{equation*}
J_{n}(p, q, \varphi)=1+\sum_{l-1}^{n} f(l, n) \varphi^{\prime} \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
f(l, n)=(-1)^{\prime}\left(\frac{n}{l}\right) \frac{(p+n)(p+n+1) \ldots(p+n+l-1)}{q(q+1) \ldots(q+l-1)} \tag{30}
\end{equation*}
$$

so that (28) becomes

$$
\begin{equation*}
\left\langle\left(\frac{N}{\theta}\right)^{2 \grave{\lambda}}\right\rangle=\sum_{n=0}^{\infty} \frac{M}{\beta} \mathrm{e}^{-\hat{a} t}\left\{I_{1}(\alpha, \beta, \delta, \kappa, \lambda, \tilde{\lambda}, \xi)+\sum_{t=1}^{n} f(l, n) I_{2}(\alpha, \beta, \delta, \kappa, \lambda, l, \tilde{\lambda}, \xi)\right\} \tag{31}
\end{equation*}
$$

where

$$
\begin{align*}
& I_{1}=\int_{0}^{\pi / 2} \sin ^{\kappa+\delta \beta} \xi \cos ^{\lambda-\alpha \beta} \xi \mathrm{e}^{2 \lambda \xi / \beta} \mathrm{d} \xi \tag{32}\\
& I_{2}=\int_{0}^{\pi / 2} \sin ^{\kappa+\delta \beta+2 l} \xi \cos ^{\lambda-\alpha \beta} \xi \mathrm{e}^{2 \lambda \xi / \beta} \mathrm{d} \xi \tag{33}
\end{align*}
$$

The various moments can be calculated by letting $\tilde{\lambda}=\frac{1}{2}, 1, \frac{3}{2}, \ldots$.

References

[1] Goel N S, Maitra S C and Montroll E W 1971 Rev. Mod. Phys. 43231
[2] Montroll E S 1971 Some Mathematical Questions in Biology IV Am. Math. Soc.
[3] Flügge S 1971 Practical Quantum Mechanics (Berlin: Springer)
[4] Lebedev N N 1972 Special Functions and Their Applications (New York: Dover)
[5] Abramowitz M and Stegun I 1964 Handbook of Mathematical Functions (Washington DC: US Govt Printing Office)
[6] Morse P M and Feshbach H 1953 Methods of Theoretical Physics (New York: McGraw Hill)
[7] Biswas S N and Karmakar B B 1976 Math. Biosci. 32 63-72

