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23529-0077, USA 

Received 9 May 1990 

Abstract. Biswas and Karmakar were the first to consider a periodic rate transform for an 
autocatalytic growth process, G(x) = - tan(a  In x ) .  They obtained an exact analytic solution 
for the probability density function by solving the equivalent Schrodinger equation for 
the Fokker-Planck equation, and utilised this function to calculate various moments. 
In this letter we extend their work to a more general rate transform G(x)  = 
a tan(p In x ) + S  cot(p In x ) .  

The growth of a population with random environmental influences has been considered 
by Goel er al [ l ]  and Montroll [ 2 ] .  They assumed that the population N ( r )  satisfied 
a stochastic differential equation of the form 

d t  

where k is a (constant) growth rate parameter, G is a growth rate function, 8 is the 
(constant) saturation level and F (  t )  is a random function representing chance, 
unspecified influences not taken care of by G. F ( t )  has the properties 

( 1 )  ( F ( r ) ) = O  

( 2 )  ( F (  t )  . F (  t ' ) )  = 2 6 ( r  - t ' )  

(3)  F ( t )  is a Gaussian process 

Working with the more convenient variable v = l n  N I 8  (1) becomes 
i.e. F (  t )  represents Gaussian white noise. 

d u  
-= kG(e ' )+  F ( r ) .  
dr  

By a stochastic argument Goel et a /  derive a Fokker-Planck equation for the probability 
P(  U ,  t ) ,  that log N /  8 has a value U at time r, 

a P  _-  d , ?a'p 
dt at: av" 

- - k - { P G ( e ' ) } + z a  - 

I f  we set 

P = q( U, t )  exp{ $1; G(e" )  dl;) 

(3) 

(4) 
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(3)  becomes the ‘equivalent’ Schrodinger equation 

2 a 9  d a 2 9  k 
k at  k au2 {u2 (5 )  

Separating variables by letting ‘U( U, t )  = e-” X (  U), the spatial dependence reduces to 
the Schrodinger equation 

d 2 X  k E  -+ - -U x = o  
du’ ( U ’  ) 

where - E  is the separation constant, and U is the Schrodinger potential given by the 
expression in braces in (5 ) .  If 

G(e’) = a tan p u  + 6 cot pu 

then letting .$=Po in (6) and defining 

(6) becomes 

d‘X A(A-1) K ( K - ~ )  
-+ d.$’ [ E -  ( ___ cos’.$ ++]x=o sin .$ 

A, K > 1. (9) 

Choosing the single branch Os .$s 7r/2 we solve (9) with boundary conditions X = 0 
for .$ = 0, X = 0 for .$ = 7r/2. This is a classic problem in quantum mechanics, namely 
that of the solution of the Schrodinger equation for the first Poschl-Teller potential [3]. 

First transform to the new independent variable y =sin’ .$ obtaining 

and then to the new dependent variable 

x =v”(l -Y)yf(Y) (11) 

we get 

y (  1 -y)f”(y) + [ ( K  i) - ( K  h + l )y]f’(y)  + : [ E  - ( K  + A ) ’ ] f =  0 (12) 

by choosing p = ~ / 2 ,  y = A/2. Equation (12) is a hypergeometric differential equation 
which has a general solution [4] 

f = C, ’ F , ( a ,  b;  c; y ) +  C2y’-crFl(a + 1 - c, b+ 1 - c; 2 -  c ;  y )  

a = i ( K  + h  *a) b = $ ( K  + A  F a )  C = K + +  (14) 

(13) 

where 

since X = 0 for y = 0, C2 = 0. To obtain the condition at y = 1 we use the well known 
transformation 15.3.6 in [5]. In the vicinity of y = 1 we must take b = -n, n = 0,1,2,  . . . 
to avoid the singularity due to the negative exponent 4- A in the second term. Using 
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(14) we find a = K + A + n and the eigenvalues E, = ( K + A  + 2n) ' .  The corresponding 
eigenfunctions are 

X, = sinK 5 cosA ~ ? F , ( K  + A  + n, -n; K ++; sin' 5). (15) 

J n ( p , q ; x ) = z F , ( p + n , - n ;  q ; x )  ( 1 6 )  

X , , = s i n " ~ c o s " ~ J n ( ~ + A ,  ~ + i ; s i n ~ [ ) .  (17 )  

Since the Jacobi polynomials are defined by [6] 

the eigenfunctions X,, can be written 

The Jacobi polynomials have the orthogonality condition [ 51 I(,' ~ " ' ( 1  - X ) ~ - ~ J , ( P ,  4 ;  x)Jm(p, 4 ;  X )  d x =  N ( p ,  49 n ) a m n  q > O , p - q > - I  

(18)  
where the explicit form of N is of no consequence for our discussion. 

Thus, 
r r i  2 

s i n ' " ~ c ~ s ' " ~ J , ~ ( ~ + A , ~ + ~ ; s i n ' ~ ) J ~ , ( ~ + A , ~ + ~ ; s i n * ~ ) d ~  

The most general solution for V is 

where â  is easily found from our expressions for E and e,. 
Using (4) 

P ( V ,  t )  =*(U, t )B  secuP p u  sin'p pv 
with appropriate conditions on crp, Sp from (8) where 
integrated expression at the lower limit of integration. 

is the constant value of the 

From (21), 

1 
K 

*(U, 0 )  == cosnP 5 cosecRP ~ P ( v ,  0 ) .  ( 2 2 )  

From (20), 
r r l 2  T I 2  I, q ( V ,  o ) x m ( t )  d t =  t cn I, Xn(t)xrn( t )  de. 

J;'2 - P(U, 0) CosaP 5 cosec"PgX,,,(t) d[=fC,,h'(K, A, n ) .  

(23) 
n - 0  

Now utilising (17), (19) and (22) we get 

(24) 

Set P (  U, 0) = 6(  U - uo) with to = uop corresponding to an initial spiked distribution and 
we obtain 
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Now using (17), (20), (21) and (25) we derive an expression for the probability density 
function P (  U, t )  

This reduces to the analogous expression given by Biswas and Karmakar [7] when the 
appropriate substitutions are made. Choosing uoP = 7r/4 so that all terms involving to 
are incorporated into a constant M 

X 

P ( u ,  t )  = 1 M sinK+'P 6 5Jfl(.$) e-". 
n =o 

The moments of NIB can easily be found from this density function 

((;)*I) = ( e 2 9  

x exp( p 2 i 5  - &) dt.  

The Jacobi polynomials may be written as 
n 

J n ( P ,  q, cp) = 1 + c f(4 n)cp' 
I - ,  

where 

n ( p + n ) ( p + n + l )  . . . ( p +  n + l - l )  f(l n )  = (-1)(y) q ( q +  1 ) .  . . ( q +  1 - 1) 

so that (28) becomes 

The various moments can be calculated by letting 1 = +, l,:,. . . . 
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