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Abstract. Biswas and Karmakar were the first to consider a periodic rate transform for an
autocatalytic growth process, G{x) = —tan(« In x). They obtained an exact analytic solution
for the probability density function by solving the equivalent Schrodinger equation for
the Fokker-Planck equation, and utilised this function to calculate various moments.
In this letter we extend their work to a more general rate transform G(x)=
a tan(B In x)+ 8 cot(B In x).

The growth of a population with random environmental influences has been considered
by Goel et al [1] and Montroll [2]. They assumed that the population N(t) satisfied
a stochastic differential equation of the form

dN N
‘E‘r*=kNG<?)+NF(1) (1)

where k is a (constant) growth rate parameter, G is a growth rate function, 8 is the
(constant) saturation level and F(r) is a random function representing chance,
unspecified influences not taken care of by G. F(t) has the properties

(1) (F(1))=0
(2) (F(1)- F(r'))=08(1~1)
(3) F(r)is a Gaussian process
i.e. F(t) represents Gaussian white noise.

Working with the more convenient variable v=In N/#8 (1) becomes

dv .
a—kG(e )+ F(1). (2)

By a stochastic argument Goel et al derive a Fokker-Planck equation for the probability
P(v, 1), that log N/ @ has a value v at time 1,

P 3 ‘ a’P
—=—k— O +i0" —.
o 8U{PG(e )} +3a p: (3)
If we set
k[° .
P=Y(uv, t)exp{O.2 J G(eL)dv} (4)
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(3) becomes the ‘equivalent’ Schrodinger equation

29V o’ Y { k N }
RSN LA s DY +— G(e¥) . 5
k at  k av’ a’[G(e )] v (%) (5)

Separating variables by letting W(v, 1) = e % X (v), the spatial dependence reduces to
the Schrodinger equation

d’X (kE

—+|{—=-U)X=0 6

do? (02 ) 6)
where —F is the separation constant, and U is the Schrodinger potential given by the
expression in braces in (5). If

G(e*)=a tan Bv+ 8 cot Bu

then letting ¢ = Bv in (6) and defining

7] ka® k&?
E=sza2 (%—ZZ,:S+ ;2 +?) (7)
ko’ k (K8’
E-_%(—f—z—+aﬁ>=/\()t—l) and 5o’ <~07—5B>=K(K—1) (8)
(6) becomes
d’x AA=1) k(k—-1) 3
d§2+[15—< o T sinE )]X—O A k> 1 (9)

Choosing the single branch 0= £=< 7/2 we solve (9) with boundary conditions X =0

for ¢=0, X =0 for £= /2. This is a classic problem in quantum mechanics, namely

that of the solution of the Schrddinger equation for the first Pdschl-Teller potential [3].
First transform to the new independent variable y =sin’ £ obtaining

A(A—1 -1
" —y)X”(y)+<é—y)X'<y>+%[E —( ((1 _y))+“(“y )ﬂx -0 (10)

and then to the new dependent variable

X=y"(1-y)"f(») (11)
we get

yA=p)f ")+ [k +2) = (k + A+ Dy1f () +I[E~(c +1)°]f=0 (12)

by choosing u =«/2, v=A/2. Equation (12) is a hypergeometric differential equation
which has a general solution [4]

f=CiF(a,b;c;y)+Coy' " “2F(a+1—¢ b+t1-c;2—c; y) (13)
where
a=3xk+A=VE) b=3k+AFVE) c=k+3 (14)

since X =0 for y =0, C,=0. To obtain the condition at y =1 we use the well known
transformation 15.3.6 in [5]. In the vicinity of y =1 we musttake b=-n,n=0,1,2,...
to avoid the singularity due to the negative exponent 3— A in the second term. Using
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(14) we find a =k + A +n and the eigenvalues E, =(k +A +2n)". The corresponding
eigenfunctions are

X, =sin* £cos* & F(k +A+n, —n; k +1;sin* &). (15)
Since the Jacobi polynomials are defined by [6]

Jo(p, g, x)=:2F\(p+n,—n;q;x) (16)
the eigenfunctions X, can be written

X, =sin“ £ cos* &J,(k + A, k +3;sin” £). (17)
The Jacobi polynomials have the orthogonality condition [5]
J‘1 x4 (1=x)"",(p,q; x)J,.(p,q; x)dx=N(p, q, n)8m g>0,p—g>-1

“ (18)

where the explicit form of N is of no consequence for our discussion.
Thus,

J sin® £ cos™ &, (k + A, k +3;sin” €)J,,(k + A, k +1; sin? &) d¢
Q0

Namn
=—" K>—%,/\>—%. (19)
2
The most general solution for ¥ is
V()= % CX,(&e (20)
n=0
where 4 is easily found from our expressions for E and e,.
Using (4)
P(v, t)=¥(v, 1)K sec™ Bv sin®* Buv (21)

with appropriate conditions on af, 88 from (8) where K is the constant value of the
integrated expression at the lower limit of integration.
From (21),

1
Y(p,0)= Z cos®® £ cosec™ ¢P(v, 0). (22)
From (20),

w/2 x w/2
f Y(v,0) X, (£)dé= ¥ an X, (€)X (£) dE (23)
0 n—=0 0
Now utilising (17), (19) and (22) we get
/2
J‘ % P(v,0) cos®® £ cosec®¢X,,(£) dE =1C,N(k, A, n). (24)
0

Set P(v,0) = 8(v —1v,) with & = v,B corresponding to an initial spiked distribution and
we obtain

G, = (%) cos*® £ cosec™ & X, (). (29)
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Now using (17), (20), (21) and (25) we derive an expression for the probability density
function P(v, t)

K

P(v,1)= Y % sin" "% ¢ cos* 7 £5in" "% & cos* " ¢oJ,, (€0)J,(€) e (26)

n=0

This reduces to the analogous expression given by Biswas and Karmakar [7] when the
appropriate substitutions are made. Choosing vy8 = @/4 so that all terms involving &,
are incorporated into a constant M

Py, 1)= E M sin“"®8 £ cos® P gJ (&) e 7 (27)
n=0

The moments of N/# can easily be found from this density function

()

mB/2 _
= J P(v, t) e*** dv

0

7/2 A4
=J’ Y —sin""% g cost B LT (k+ A, k+31;sin? §)
9 n=0 B
206,
Xexp(———g—at> dé. (28)
B
The Jacobi polynomials may be written as

I(p.a0)=1+ X Sl n)e' (29)

where

(ptn)(p+n+1)...(p+n+i-1)
g(g+1)...(g+1-1)

f<1,n>=(—1)’<§) (30)

so that (28) becomes

<(ﬂ> >= s M "3'{11(01, 8.6,k AL &+ T f(L m) e, B, 6,k A LK, f>} (31)

e
0 n=0 ﬁ
where
/2 .
I =J sin""%8 ¢ cos* TP £ e /P ¢ (32)
1]
/2 ) N
L= J. sin“ "7 £ cosh 2P ¢ @2AE/E (g (33)
(o]

The various moments can be calculated by letting A =1,1,2,....
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